Bedload transport in shallow water models: why splitting (may) fail, how hyperbolicity (can) help
نویسندگان
چکیده
In this paper, we are concerned with models for sedimentation transport consisting of a shallow water system coupled with a so called Exner equation that described the evolution of the topography. We show that, for some model of the bedload transport rate including the well-known Meyer-Peter and Müller model, the system is hyperbolic and, thus, linearly stable, only under some constraint on the velocity. In practical situations, this condition is hopefully fulfilled. The numerical approximations of such system are often based on a splitting method, solving first shallow water equation on a time step and, after updating the topography. It is proved that this strategy can create spurious/unphysical oscillations which are related to the study of hyperbolicity e.g. the sign of some eigenvalue of the coupled system differs from the splitting one. Some numerical results are given to illustrate these problems and the way to overcome them in some cases using an stronger C.F.L. condition.
منابع مشابه
Assessment of methods used in 1D models for computing bedload transport in a large river: the Danube River in Slovakia
Comprehensive measurements of bedload sediment transport through a section of the Danube River, located approximately 70km downstream from Bratislava, Slovakia, are used to assess the accuracy of bedload formulae implemented in 1D modelling. Depending on water discharge and water level, significant variations in the distribution of bedload across the section were observed. It appeared that, wha...
متن کاملTwo - dimensional Sediment Transport models in Shallow Water equations . A second order finite volume approach on unstructured meshes . ∗
In this paper we study the numerical approximation of bedload sediment transport due to shallow layer flows. The hydrodynamical component is modeled by a 2D shallow water system and the morphodynamical component by a solid transport discharge formula that depends on the hydrodynamical variables. The coupled system can be written as a nonconservative hyperbolic system. To discretize it, first we...
متن کاملAnalysis of mechanical-hydraulic bedload deposition control measures
During floods, the bedload transport of steep headwaters can exceed the hydraulic transport capacity of milder downstream reaches where settlements are often situated. Therefore, sediment retention barriers are typically installed upstream of such sensible areas. These barriers trigger bedload trapping via two control mechanisms, either hydraulic or mechanical. Both deposition controls, pertain...
متن کاملQuasi-two-layer morphodynamic model for bedload-dominated problems: bed slope-induced morphological diffusion
We derive a two-layer depth-averaged model of sediment transport and morphological evolution for application to bedload-dominated problems. The near-bed transport region is represented by the lower (bedload) layer which has an arbitrarily constant, vanishing thickness (of approx. 10 times the sediment particle diameter), and whose average sediment concentration is free to vary. Sediment is allo...
متن کاملBedload transport predictions based on field measurement data by combination of artificial neural network and genetic programming
Bedload transport is an essential component of river dynamics and estimation of its rate is important to many aspects of river management. In this study, measured bedload by Helley- Smith sampler was used to estimate the bedload transport of Kurau River in Malaysia. An artificial neural network, genetic programming and a combination of genetic programming and a neural network were used to estim...
متن کامل